An O(n)-Time Algorithm for the Paired-Domination Problem on Permutation Graphs

نویسندگان

  • Evaggelos Lappas
  • Stavros D. Nikolopoulos
  • Leonidas Palios
چکیده

A vertex subset D of a graph G is a dominating set if every vertex of G is either in D or is adjacent to a vertex in D. The paired-domination problem on G asks for a minimum-cardinality dominating set S of G such that the subgraph induced by S contains a perfect matching; motivation for this problem comes from the interest in finding a small number of locations to place pairs of mutually visible guards so that the entire set of guards monitors a given area. The paired-domination problem on general graphs is known to be NP-complete. In this paper, we consider the paired-domination problem on permutation graphs. We define an embedding of permutation graphs in the plane which enables us to obtain an equivalent version of the problem involving points in the plane, and we describe a sweeping algorithm for this problem; if the permutation over the set Nn = {1, 2, . . . , n} defining a permutation graph G on n vertices is given, our algorithm computes a paired-dominating set of G in O(n) time, and is therefore optimal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paired domination on interval and circular-arc graphs

We study the paired-domination problem on interval graphs and circular-arc graphs. Given an interval model with endpoints sorted, we give an O(m + n) time algorithm to solve the paired-domination problem on interval graphs. The result is extended to solve the paired-domination problem on circular-arc graphs in O(m(m+ n)) time. MSC: 05C69, 05C85, 68Q25, 68R10, 68W05

متن کامل

A polynomial-time algorithm for the paired-domination problem on permutation graphs

4 A set S of vertices in a graph H = (V, E) with no isolated vertices is a paired-dominating 5 set of H if every vertex of H is adjacent to at least one vertex in S and if the subgraph 6 induced by S contains a perfect matching. Let G be a permutation graph and π be its 7 corresponding permutation. In this paper we present an O(mn) time algorithm for finding 8 a minimum cardinality paired-domin...

متن کامل

Linear-Time Algorithms for the Paired-Domination Problem in Interval Graphs and Circular-Arc Graphs

In a graph G, a vertex subset S ⊆ V (G) is said to be a dominating set of G if every vertex not in S is adjacent to a vertex in S. A dominating set S of a graph G is called a paired-dominating set if the induced subgraph G[S] contains a perfect matching. The paired-domination problem involves finding a smallest paired-dominating set of G. Given an intersection model of an interval graph G with ...

متن کامل

Linear-Time Algorithm for the Paired-Domination Problem on Weighted Block Graphs

Given a graph G = (V,E), the domination problem is to find a minimum size vertex subset S ⊆ V (G) such that every vertex not in S is adjacent to a vertex in S. A dominating set S of G is called a paired-dominating set if the induced subgraph G[S] contains a perfect matching. The paired-domination problem involves finding a paired-dominating set S of G such that the cardinality of S is minimized...

متن کامل

Faster Algorithms for the Paired Domination Problem on Interval and Cir ular-Ar Graphs

Abstra t A vertex subset D of a graph G is a dominating set if every vertex of G is either in D or is adja ent to a vertex in D. The paired domination problem on G asks for a minimumardinality dominating set S of G su h that the subgraph indu ed by S ontains a perfe t mat hing; motivation for this problem omes from the interest in nding a small number of lo ations to pla e pairs of mutually vis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009